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Abstract 

Lacouture and Marley have previously been quite successful in modeling the probability correct 
and the mean correct response time in unidimensional absolute identification tasks for various 
stimulus ranges and stimulus/response set sizes.  These fits include those to a set of phenomenon 
often referred to as end-anchor effects. The present extension of Lacouture and Marley’s mapping 
model is aimed at fitting not only probabili ty correct and mean correct response time, but the 
whole distribution of (correct) response times as observed for the different elements of the 
stimulus set. 
 
 

A typical absolute identification experiment involves a set of N stimuli that vary along 
some psychological dimension. On each trial, one of the N stimuli i s presented, and the 
participant’s task is to select the previously specified ‘correct’ response for that stimulus. The 
responses are usually key presses, with the keys being associated with the numerals 1 through N, 
with the usual order of the numerals being in agreement with the psychological ‘magnitude’ of 
the stimuli so identified. One of the major phenomena in this area is that no matter how widely 
spread the stimuli are on the relevant sensory dimension, people are usually only able to identify 
the stimuli up to an accuracy that corresponds to correctly identifying about seven stimuli . 
Although our own empirical and theoretical work includes study of this basic result, we have 
gone much further and studied a second set of phenomenon variously referred to as the end-
anchor effect, the bow effect, and sometimes the serial position effect (Lacouture, 1997; 
Lacouture and Marley, 1991, 1995). These terms refer to the fact that accuracy decreases and 
response time increases as one moves away from the stimuli at the end of the presented range; the 
effects also become more pronounced for larger set sizes (larger N).  

Previously we have successfully modeled the relevant accuracy data and the general 
pattern of the mean correct response time data (Lacouture and Marley, 1998). However, until 
now we have not applied our model to complete response time distributions. The revised model 
presented here is directed at eliminating these limitations of our prior work.  

Both our original and revised mapping model of unidimensional absolute identification 
consists of a three-layer connectionist feed-forward network with linear units. The sensory input 
is mapped to a (bounded) unidimensional (scalar) internal representation, which is in turn mapped 
via a theoretically motivated set of linear functions to an N-dimensional output vector. A key 
feature of the model is the specific set of weights and biases used in the linear mappings of the 
internal scalar representation to the N-dimensional output vector. This output vector in turn 
provides the input to the decision process. The addition of Gaussian noise at each of the input, 
internal, and output level of the process enables the mapping model, with a single set of 
parameter values, to reproduce core characteristics of identification and categorization data. The 
combination of our basic mapping model with a leaky competing accumulator decision process 



 

 

(Usher and McClelland, 2001) allows us to model full RT distributions.  Lacouture and Marley 
(2000) presented theoretical results. The current paper presents comparison of empirical and 
simulation results. 

The leaky competing decision process 
For an absolute identification task with N stimuli , the simulated model involves N 

decision units (accumulators). Using Usher and McClelland’s (2001) notation, let xi be the 
activation signal received by accumulator i, and let fi be the firing rate of accumulator i such that 
fi = xi for xi > 0 and fi = 0 for xi  < 0. We assume that a response is made when a single 
accumulator remains active and has reached an equili brium state. Response time is the time taken 
for the network to reach equili brium. (For now, we are implementing ‘ reaching equili brium’ by 
waiting until only one unit is active, and its activity has changed less than a chosen amount over a 
number of trials). For each accumulator the change in activation follows 
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where the change in activation for accumulator i depends on: the external input with value ρi  - in 
the present case, this value is given by the output from the mapping model;  the leakage 
parameter λ; the self ampli fication parameter α; and the inhibitory signal from the other 
accumulators with parameter β. For xi  > 0, the equation is linear and we can replace the value 

(λ − α) by a net leakage parameter k. For k > 0 activations decay, and for k < 0 activations self-
ampli fy. We can replace the firing rates fi in Eq. (1) by activation levels xi, and truncate the xi at 
zero. We then have 
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Simulations by Usher & McClelland (2001) show that Eq. (2) gives a close approximation 

to Eq. (1) Because of the inhibitory processes when k > 0, the activations converge towards zero 
for all but a single unit. Also, the asymptotic activation in that remaining unit reaches an 
equilibrium level where the net input to the accumulator equals the sum of the inhibitory and 
leakage signals. Again, the ‘overt’ response associated with the ‘winning’ unit is made when an 
equilibrium state is reached - see details presented just before Eq. (1). 

Empirical experiment 
To test how the revised model can fit RT distributions, data were collected from a single 

participant who was required to perform 10 sessions of an absolute identification task involving 
10 line lengths. The details of the task are presented in Lacouture (1997). Each session had 300 
trials, which provides a good representation of the RT distribution (for correct responses) for each 
stimulus. 



 

 

Method 
Apparatus and General Procedure 
The apparatus and general procedure are the same as were used in Lacouture (1997). The 

participant performed identification of visual stimuli . Responses were collected using a custom-
made keyboard with 11 buttons. On this keyboard, one button, labeled "START", is located at the 
center of the ten other buttons positioned in a semi-circle such that the distance between the 
START button and each of the other response buttons is equal (101 mm). Each response button 
corresponds to one of the possible stimuli and the button arrangement corresponds to the natural 
ordering of the stimuli from the smallest (leftmost key) to the largest (rightmost key). The 
participant initiated each trial by pressing the START button. One randomly selected stimulus 
was shown on the screen 100 ms later. The participant had to identify the stimulus by pressing 
one of the appropriate response buttons. Feedback was provided for one second in the form of a 
number corresponding to the ordinal position of the stimulus. If the participant made an incorrect 
response, a low frequency (500 Hz) tone was generated for 500 ms.  

Participant 
One graduate student performed a total of 10 experimental sessions each consisting of 300 

trials. 
Stimuli 
The stimulus set consisted of ten lines of different lengths; on each trial, one of these 10 

stimuli was  presented horizontally in the middle of the computer screen. From the participant's 
viewpoint the stimuli appeared like continuous lines. The length of each segment, measured in 
pixel units (screen dots), was 92, 106, 120, 138, 160, 184, 212, 242, 278, and 320, respectively. 
Within the stimulus set, each successive stimulus was 15 % longer than the previous one. 
Consequently, each adjacent pair of stimuli was well above Weber's fraction for line length. The 
stimuli were given "correct" response labels of “1” to “10” according to increasing length. 

Results 
Trials associated with extreme response time values (2 % at each extreme of the percentile 

distribution for each stimulus) were removed. Only correct trials were used for response time 
results. The right panels of Figure 1 report probabil ity correct (PC), mean correct response time 
(MRT), and standard deviation of RTs, plotted according to stimulus position.  

Analysis of response time distributions  
The distribution of correct response times for each stimulus in each condition was 

analyzed using maximum likelihood estimations. The best fitting parameters were found for the 
ex-Gaussian, Gaussian and Weibull functions. Using the AIC criterion, the ex-Gaussian proved in 
all cases to provide a superior fit to the empirical distributions. The ex-Gaussian function is the 
convolution of a Gaussian (normal) function with an exponential function and is written as: 
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In this equation, the exponential function is multiplied by the value of the cumulative 

density function of the Gaussian function symbolized by Φ. The resulting ex-Gaussian function 
has three parameters, µ, σ, and τ. The two first parameters (µ and σ) correspond to the mean and 
standard deviation of the Gaussian component. The third parameter (τ) is the mean of the 
exponential component. 

The bottom panels of Figure 2 present, for each stimulus, a histogram representing the 
distribution of RT with the overlayed best fitting ex-Gaussian function.  



 

 

Simulating the absolute identification task 
In order to replicate the empirical data, a simulation of the mapping model was run using 

the leaky competing accumulator decision process. The output from the mapping process became 
the input to the leaky competing decision process. We obtained a good fit of the simulated data to 
the empirical data with the following parameters:  input noise γ  = 0.35, hidden noise η = 0.02, 
output noise ε = 0.02 and, for the leaky competing parameters, β = 0.25 and k = 0.1. Figure 1 
ill ustrates the overall correspondence between the empirical (right panels) and simulated (left 
panels) results. Note that the simulated response times were converted to ms using a regression 
function of the simulated RTs (in network steps) on the empirical RTs (in ms). In all cases the 
results are plotted according to stimulus position. Overall , the results of the simulated process 
closely matches the empirical data. 

Response time distributions of the simulated process 
Best fitting parameters for the Gaussian, ex-Gaussian and Weibull functions were 

estimated for each of the ten distributions (each of the stimuli). Figure 2 presents the simulated 
distributions overlayed with the best fitting ex-Gaussian function. For both the empirical and 
simulated data, the distributions are best represented by ex-Gaussian functions. Also, in both 
cases, the shape of the distributions approach an Exponential function towards the ends of the 
stimulus continuum (parameter σ tends toward zero). For all stimuli , a similar distribution is 
observed for the empirical and simulated results. Figure 3 reports the estimated parameters of the 
ex-Gaussian function plotted according to stimulus position for both the simulated and the 
empirical results. The top left panel presents the estimated µ’ s, the top right panel the estimated 
σ’ s, and the bottom panel the estimated τ’ s. The figure shows very good fit for the parameters µ 
and τ and a possibly significant discrepancy between simulated and empirical results for 
parameter σ. We must complete further simulations, with variations in σ, to understand how 
sensitive the fits are to changes in that parameter.  
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Figure 1. Results of the absolute identification experiment. Mean correct response time, 
probability correct, and standard deviation of RTs, plotted according to stimulus 
position for empirical (right panels) and simulated (left panels) data. 
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Figure 2. Observed RT distribution plotted for each stimulus with the overlayed best fitting 

ex-Gaussian function. Top row: empirical data, bottom row: simulation results. 
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Figure 3. Estimated parameters of the ex-Gaussian function plotted according to stimulus 
position for both the simulated and the empirical results.  


