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Abstract

We present psychophysical data on fast auditory periodicity detection in the millisecond range
(temporal pitch) that rule out a simple first-order inter-spike interval model. We then present a neural
sequence learner that examines fast spike patterns as they are supposed to occur with periodic
auditory signals and measures the degree of their regularity. The output of the neural net is evaluated
by a decision algorithm that is able to decide between more and less regular sequences. The data of
this virtual decider prove to be compatible with the psychophysical data.

A periodic sound with the fundamental frequency f0 consists of a series of harmonics f0, 2 f0,
3 f0, etc. or only of some of the harmonics (e.g. in the case of the missing fundamental). There
are two complementary mechanisms which accomplish the perception of the periodic sound's
pitch:

• Spectral pattern recognition acts on the neural excitation pattern produced in the
inner ear (cochlea) by the lower, resolvable harmonics (≤15 f0).

• Temporal periodicity analysis interprets the temporal structure of the excitation of
the cochlea. This is the only operative mechanism for harmonics above 15 f0,
which can no longer be resolved by the cochlea and do not produce any
interpretable spectral pattern.

Our research concentrates on the second mechanism.

Psychophysics

In psychoacoustical experiments on temporal periodicity analysis there must not remain any
spectral cues that might assist the subject in detecting the periodicity. A periodic stimulus
with fundamental frequency f0 should therefore be high-pass filtered at 15 f0 or higher so
there is no energy in the frequency range left that could give rise to spectral pattern
recognition. Reconstitutions of the lower harmonics caused by nonlinearities of the inner ear
should be masked by low-pass filtered noise.



The resulting stimulus sounds markedly periodic and can easily be distinguished from
aperiodic stimuli with equal spectra. A 2.5% increase in f0 will be detected (Houtsma and
Smurzynski, 1990). They obtained best results with click-like stimuli. Kaernbach and Bering
(2001) showed that with improved stimuli the jnd for purely temporal stimuli can be as low as
1.3%. Furthermore, these stimuli conveyed musical information. These results can be
explained by the high regularity of the resulting temporal structure of the neural excitation:
spikes or short bursts of spikes in equal temporal distances τ = 1 / f0. With our capability to
detect the periodicity and to judge its pitch we are able to interpret temporal structures in the
neural excitation which are as fast as 500 Hz.

According to the autocorrelation theory of Licklider (1951), the output of a particular
cochlea channel is transferred to a fast line as well as to a delay line (see Figure 1). An array
of coincidence neurons calculates the autocorrelation of this output for certain delays. Let the
center cell of Figure 1 be the 10-ms cell. It will see the signal on the fast line, and its delayed
version 10 ms later on the delay line. A 100-Hz periodic click train will excite this neuron
simultaneously via both lines and cause it to fire. The 9-ms cell at its left will never see
simultaneous input on both the fast line and the delay line. This model might provide an
explanation of how we distinguish a periodic click train from a random click train.

Figure 1: The autocorrelation model of Licklider (1951)

This model has been put into question by psychophysical results based on “second-
order periodicity”. Imagine a click train where the distance of all successive odd clicks is 10
ms. The even clicks divide these 10-ms intervals randomly in varying portions. Successive
intervals could be 2,8,6,4,3,7,5,5... ms, with 2+8 = 6+4 = 3+7 = 5+5. If this signal is high-pass
filtered and masked in its low-pass portion in order to test the temporal periodicity analysis, it
cannot be distinguished from a random click train (Kaernbach and Demany, 1998).

These findings are not compatible with the autocorrelation model (Figure 1): The
10-ms cell should notice that every second click had a predecessor exactly 10 ms earlier. The
findings suggest that the temporal periodicity analysis resorts to the statistics of the first-order
inter-spike intervals (ISI). These statistics are heavily disturbed by the even clicks, resulting
in a uniform distribution between 0 and 10 ms without a peak at 10 ms. This would explain
why second-order periodicity cannot be detected: Apparently, the mechanism for temporal
periodicity analysis is not capable of doing simple arithmetic like 2+8 = 6+4 = 3+7 = 5+5.

There is a simple example that proves that this first-order ISI model fails to work
correctly. Instead of using one interval of 10 ms that is randomly divided we work with two
different but fixed intervals. A click train with a periodic sequence of the two intervals (e.g.
6,10,6,10,6,10... ms) has to be compared with a random sequence of 6-ms and 10-ms
intervals. In this case the first-order ISI statistics are the same for both stimuli. However, as
shown in the following experiment, human subjects can easily tell the difference.
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Experiment 1

The stimuli consisted of sequences of clicks. These clicks were high-pass filtered at 2000 Hz.
Possible distortion products were masked with low-pass filtered noise. The clicks formed
intervals of 6 (henceforth A) or 10 (B) ms. Three different types of regular click sequences
were used: ABABAB... (i.e. periodic(A,B), henceforth ||:AB:||), AABBAABB... = ||:AABB:||,
and ||:AABBAB:||. These were to be compared to random click sequences. The random
sequences consisted of A and B intervals in random order and could have a maximum of two
identical intervals in succession. The click sequences could have 4 different lengths (15, 30,
50 or 70 intervals). The subjects listened to two different click sequences, a regular one and a
random one, and the task was to decide whether the first or the second was the regular one.
Four students in the age range of 19 to 26 (3 female, 1 male) participated in three sessions in
each of which 60 trials for each condition (3 different sequences against random x 4 lengths)
were performed. The first session was considered as training and did not contribute to the data
that were analyzed.

Results

As seen in Figure 2, ||:AB:|| can be
easily discriminated from random
click sequences. It’s harder to
discriminate ||:AABB:|| from random
sequences but it’s still possible. The
only sequence the 4 subjects
couldn’t discriminate from a random
sequence was ||:AABBAB:||. For
short sequences of this type, the
performance is somewhat lower
(p<0.1) than 50%, indicating, that
subjects perceived this sequence as
less regular than random sequences.
The performance for ||:AB:|| and
||:AABB:|| gets better for longer click
trains but the main difference is
between the click trains with a length
of 15 and 30 intervals.

Experiment 2

In Experiment 1 we only had four subjects. This and the fact that the chosen lengths of the
click trains have a bad resolution for the interesting lengths (i.e. between 15 and 30 intervals)
lead us to do Experiment 2. The same kind of stimuli were used for this experiment and also
the task for the subjects was the same. We now presented 10, 20, 30, 40 and 50 intervals to
the subjects. For the click trains with a length of 10 and 20 intervals only, ||:AB:|| and
||:AABB:|| vs. random sequences were presented. Ten students in the age range of 19 to 26 (9
female, 1 male) three of which had already participated in Experiment 1 participated in four
sessions in each of which 60 trials for each condition (3 or 2 different sequences against
random x 5 lengths) were performed. The first session was considered as training and did not
contribute to the data that were analyzed.
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Figure 2: Results of Experiment1. Mean hit rate (%)
in dependency of stimulus length (number of
intervals) and regularity of stimulus



Results

Results of Experiment 2 are shown in Figure 3. It can be seen in Figure 3a that again ||:AB:||
can be easily detected. Even click trains that are as short as 10 intervals–that is about 80 ms
long–sound more regular than random click trains of equal length. Again, ||:AABBAB:||
sounds less regular than random click trains (p<0.01). This is an result we didn’t expect. The
performance on ||:AABB:|| in this experiment is a bit worse than in Experiment 1. Figure 3b
shows the ||:AABB:|| performance for single subjects. As can be seen, there have been only 3
good “||:AABB:|| detectors”. Two of them had already participated in Experiment 1. Their
performance didn’t change during the two experiments, so these effects aren’t training effects,
as one might suppose. The other subjects had near-chance performance on the ||:AABB:||
sequences. The main difference in the performance of detecting ||:AABB:|| sequences between
the two experiments is the ratio of good and bad ||:AABB:|| detectors. However, as can be
seen in Figure 3b, there are subjects that are able to detect these sequences very well.
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Figure 3: Results of Experiment 2. a) Average hit rate (%) over all subjects in dependency of
stimulus length (number of intervals) and stimulus type. b) Hit rate (%) on ||:AABB:|| for each
single subject.

Neural model

The model we introduce here is an extension of the above mentioned first-order ISI model. It
is a simplification of a neural network model by Kaernbach and Mohlberg (1994) that is able
to learn the regularity in a periodic click train via fast synaptic plasticity. First we will present
a model that is able to learn the regularity of ||:AB:|| sequences and extend it later, so it can
also learn the regularity of ||:AABB:|| and – depending on the parameters – even of
||:AABBAB:|| sequences.

The scheme in Figure 4a shows an array of ISI-sensitive cells including a 6-ms and a
10-ms cell. The stimulation of the 6-ms cell would be optimal by a spike that was proceeded
by another spike 6 ms earlier. These cells are connected all-to-all, with connection delays as
long as the sensitive interval of the receiving cell. The connection w10,6 from the 6-ms to the
10-ms cell would thus have a delay of 10 ms. Let us consider the activity of this network
when stimulated with a periodic click train consisting of the intervals 6,10,6,10,6,10...ms. In
addition to the stimulation by the output of the cochlear channel at the end of the 10-ms
interval the 10-ms cell will furthermore see the output of the 6-ms cell via w10,6 which will
arrive at the same time if the latter fired at the end of the proceeding 6-ms interval. Hebbian
learning rules (cf. Rumelhart & McClelland, 1986; see also Table 1) determine how the
connections learn their weights. The connections w10,6 and w6,10 will be strengthened (see
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cj(t-1) ci(t) ∆wij
1 1 +3/4 λ
1 0 -1/4 λ
0 1 0
0 0 0

Table 1: Hebb learning rule for
the changing of weights between
neurons. Status of neuron j in
time step t-1, status of neuron i in
time step t, and change of the
strength of the connection from
neuron j to neuron i. With λ the
learning speed can be varied.

Figure 4a). This leads to a stabilization of the activity of the neural net for this periodic input.
If we, on the other hand, present this network with a random sequence of 6-ms and 10-ms
intervals, these connections would be less strong than with stimulus ||:AB:||. This won't help
the neural net to reach a stable activation or a stable oscillation of activation as will be shown
later.

Figure 4: Strengthened connections of the neural net for a a) ||:6,10:|| and a b) ||:AABB||
sequence. In the second panel, a circle (e.g. A1) does not necessarily represent a single
cell. It can also stand for a group of cells.

The model presented in Figure 4a is, however, not
capable of learning sequences more complicated than
||:AB:||. The extension we have to do to our model so that
it can learn the regularity of sequences of higher Markov
order (||:AABB:|| etc.) is to stimulate more than just one
cell by a single click. We need a couple of cells that are
tuned to the same ISI. The cells could then build
subgroups in order to represent this more complex
stimulus. For ||:AABB:|| the net would build two A
subgroups and two B subgroups so that wA2A1, wB1A2,
wB2B1 and wA1B2 would be strengthened which would lead
the net to stabilize its activity (see Figure 4b). Exemplary
simulation results for this net are shown in Figure 5.

Figure 5 Simulation results for 60 intervals of the stimuli ||:AB:||, ||:AABB:||, and a random
sequence. Each column monitors the output of 10 neurons for one time step (interval). The gray
shading indicates the input to the cells, and the black dots represent firing cells.
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Decision algorithm

A major goal of the present study was to complement the simplified network model described
above with a decision algorithm that would allow to simulate behavioral data. As can be seen
in Figure 5, for regular stimuli the net will sooner (||:AB:||) or later (||:AABB:||) oscillate in a
stable way. This feature of the net will be used by our decision algorithm to decide for the
more regular stimulus. Over a certain period of time the standard deviation of the number of
firing cells is calculated. High standard deviations result from unstable activation patterns (cf.
Fig 5, bottom row), whereas stable oscillations lead to low standard deviations. The standard
deviation is then divided by the mean firing rate (standard deviation / mean = relative
standard deviation). The smaller this value, the more stable the net. This calculation permits
us to simulate a virtual subject: We present the net with a regular and a random sequence. The
output of the net is then evaluated by the decision algorithm: The relative standard deviations
of the number of firing cells are compared for the two sequences, and the smaller value
indicates the more regular sequence. That is how our virtual subject makes its decision, which
can be false or true. The percentage of correct responses can then be compared to behavioral
results.

Simulation

Each data point in Figure 6 is the result of 1000 comparisons. For the simulation we varied
three parameters: the learning speed, the number of neurons optimized for the same ISI and
the memory of each neuron (see Details of the Network). Learning speed is defined by the
factor with which we multiply the amount in which the weights are changed (see Table 1).
With these three parameters we are able to control the number of clicks needed for a correct
decision, as well as the relative performance for simple (||:AB:||) and complex (||:AABB:||,
||:AABBAB:||) sequences. The simulation data presented here demonstrate that it is possible
to obtain data similar to the results of Experiment 1. In this example, the neural net with the
decision algorithm is able to discriminate ||:AB:|| and ||:AABB:|| sequences from random
sequences. Even the performance less 50% for ||:AABBAB:|| found in Experiment 1 can be

simulated. Individual differences as
found in Figure 3b can be reflected by
assuming different sets of parameters
for different subjects.

Discussion

Click sequences like ||:AB:|| and
||:AABB:|| can be detected against
random click sequences as more
regular by subjects as well as by our
model. ||:AABBAB:|| seems to sound
less regular than random click
sequences. By varying the amount
how the past firing rate of a neuron is
considered to calculate the future
firing rate (see details of the
network), we can also simulate this
finding.

0

50

100

15 30 50 70
Intervals

AB AABB AABBAB
Figure 6: Results of the simulation. Mean hit rate (%)
in dependency of stimulus length (number of
intervals) and regularity. (Net parameters: 2 blocks of
3 neurons; λ=0.015; memory=16 time steps)



For further experiments it is planned to vary the length of the intervals. Instead of
taking 6 and 10 ms for A and B, we could use 7 and 9 ms, or 5 and 11 ms. This will
necessitate a change in our model. So far the neurons did either get input from the cochlea or
not. If there is a difference in performance depending on the similarity of A and B we will
have to reintroduce a Gaussian input function (Kaernbach & Mohlberg, 1994). It appears,
however, that the decision algorithm developed with the simplified model can straightforward
be applied to the more realistic Gaussian extension.

Details of the Network

A cells sums up a potential Vi that consists of the input by the other neurons in the previous time step
and an external field φi. It fires if Vi exceeds a threshold η=1.
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The external field φi(t) represents a cell’s stimulation by a click at time t. It comprises a fixed
component ψ and a noise component νi(t) which is reduced depending on the mean activity <ci>x of
the cell i over the last x time steps (memory). It gets thus the smaller the more the cell fired during its
recent history. These components are added and multiplied with the input function (I) (1 or 0
depending if the cell is tuned to the ISI or not).
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The synaptic weights are modified according to Hebbian learning rules (see Table 1), keeping them
nonnegative. After the update, the weights are renormalized such that the sum rule ∑ =

=
N

j ijw
1

9.0 η

holds. The fixed component ψ of the external field was set to 0.6, the noise component νi(t) was
chosen uniformly from [0, 0.7]. There were no connections from cell i to cell i.
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